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Abstract 

We show that for the critical dimensions D = 2 + 12(q + 1)(0 < q < 1) the q-deformed Fock 
space is free of negative norm states (ghosts). © 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduct ion  

There has been a lot of  interest in the study of  quantum groups [1-5] during the last 

decade. They appeared in the development of  the quantum inverse method and the study of 

the Yang-Baxter  equations [6,7]. Moreover, an interesting aspect of  the quantum groups is 

related to the idea that symmetries under q-deformed groups or algebras (in the sense of the 

invariance under co-action) can be considered as the underlying principles for constructing 

sensitive theories. 

The purpose of the this paper is to show that the q-deformed Fock space of  an open 

bosonic string does not contain negative norm states for the space- t ime critical dimension 

D = 2 + 12(q + 1) (0 < q < 1). In Section 2, we describe the formalism and in Section 3, 

we prove a No-ghost  theorem and finally, in Section 4 we draw our conclusions. 
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2.  F o r m a l i s m  

The Nambu-Goto classical action of an open string is given by [8] 

1 f dr  dor[(x - x ' )  2 - jc2xt2]l/2, (1) 
S -- 2~rga~ 

where r, a are dimensionless world-sheet parameters. Here c~' is the string scale and x~ 
(resp. x 'u) means 8x•/Or (resp. 8xU/Oa). The general solution of equations of motion (in 
the orthonormal gauge) subject to the edge conditions 

x '~ (a  = 0, Jr; r )  = 0 (2) 

is 

5~ - x"  = 0, (3) 

the general solution of this equation has an expression as follows: 

x u = q# + 2e~lp u 
o o  

+ i 24~S~, Z 1 , . a~Uexp( inr ) ]cosna ,  - ~ [ a  n e x p ( - m r ) +  
n=l 

where qU and pU are the string centre of mass coordinates and the momentum, respectively. 
q subject to the Virasoro conditions After q-deformation the physical states 7t)phys. are 

q q 
Lnl~phys. = 0, n > 1, (4) 

and 

(L~ - Otq(0))l~)qhys. = 0, (5) 

where the q-deformed Virasoro generators Ln q are given by 

t q  = 1 ~--'~. o[~ mO/~ "q (6) 
4or' z..~" - u" ' 

where 

ot~ = 2 ~ p  # ,  

°tU-n = 2~/~-~1nan tu ,  n > 0, (7) 

Otn u = 2~/2-~tnan u, n > 0, 

and the dynamical variables [9-14] an u, afn u satisfy the nonvanishing q-deformed commu- 
tation relations 

a u " % ]  = ~n,mg #v ( 8 )  n , ' - 'm  ] q  
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and 

[qU, pV]q = igUV, 

where 

v = ~4?u~v ~u v 
[a~ u, am]q "n Um [ v'~lz ' "~ (q -- 1)Sn.ma~)'t,']a~a~/' (9) 

and 

[qU, pV]q : qU pV _ qpV qU. (10) 

Note that in Eq. (6), we have introduced a q-deformed normal ordering ": :q" which is defined 
as [10,11] 

tlUtlafV-'n--m atV~lZ -- Uv ~v' #' :q=-- -m "n + (q 1)rn,mAu,v,a m a n , (11) m 

m ~tt " q - -  ~tr/ t~t/ , 

with 

UUvv { 1 i f / z = v a n d # ' = v ' ,  (12) 
A ' = 0 otherwise. 

3. No-ghost theorem 

q An arbitrary state [~)phys is called a physical state if it satisfies the constraints 

L q q I~)phys ---- O, n > O, 

( L g  - q q(0))l¢)phy s = 0 

with 

(13) 

(14) 

and 

q(010)q : 1. 

A q-deformed state IS)q which obeys 

( L q - Otq(O) )lS)q ~- 0 

(17) 

(18) 

+Oo ~ t • 
Lq : __1 Z:Oln_mOln#.  q . ( 1 5 )  

4or' 

It is worth to mention that or(0) is a c-number coming from the q-deformed normal 
ordering "::q". The q-deformed Fock space is defined such that 

anU[0)q = 0, n > 0, PUlO)q = pUlO)q (16) 
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is called spurious state if it is orthogonal to all physical states, i.e. 

q(S I q ~)phys = O, (19) 

and it can always be written in the form 

IS}q = E Lqn [Cbn)q, (20) 
n>0 

where [dOn )q is some q-deformed state that obeys 

(Lqo - Otq(O) + n)ldOn)q = 0. (21) 

Actually, the infinite series in Eq. (20) can be truncated, since the L q's for n > 3 can 

be represented as iterated commutators of Lq_l and Lq_2 , e.g. Lq_3ot[Lq_l, Lq2]ql.2 (see 
relations (32), (35) and (36)). So we can simply write a spurious state as 

IS)q = Lq_l ]dOl)q + Lq_2]do2)q, (22) 

where I dO 1 ) q and [ dO2 ) q obey Eq. (21). Notice that the states of the form (22) are orthogonal 
q 

to physical states I~P)phys. 
Now, if a q-deformed state IX}q is both spurious and physical, then it has zero norm. 

Thus, these q-deformed states are orthonormal to all physical states, including themselves. 
We can construct states of this type by considering spurious state of the form 

IX)q = (Lq_2 + ~"2q(Lql)2)lO)q, (23) 

where S2q is a c-number (depending on q) and IO)q an arbitrary q-deformed state satisfying 
the constraints 

LqlO)q = 0, n > 0, (24) 

(L q - Otq (0)) (Lq2 -t- .(2q ( tq l )2)]O)q = 0, (25) 

and 

(Loq-2lO)q = aq IO)q, (26) 

where Aq is a function to be determined and discussed later. 

It is worth to mention that the constraint (25) yields to the following two relations: 

1 
gqlO)q = q [ O / q ( O )  - -  (1 + q)llO)q (27) 

and 

LqlO)q ~ ~2 [Otq(O ) (1 -~q)2]  IO)q. 

Consequently, we deduce that the q-deformed state I/~))q satisfies 

I L q +  (1 2q+q-----~)l IO)q = 0  

(28) 

(29) 
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and 

(1 + q) (30) Ctq (0) - 2 

Now, in order that IX)q have zero norm it must be physical, and in particular, it sould be 
annihilated by Lq, for m > 0. Since it is trivially annihilated by L q with m > 3, we need 
only consider to impose the conditions: 

LqlO}q = 0 ,  LqlO)q - -0 .  (31) 

After straightforward calculations and making use of the q-deformed Virasoro algebra [8- 
13]: 

[L q Lqnlq ..... [ q n ' m l q n ' m  a q l q n , m l q  n,m 
, = ~ m  ~ m  - -  ~ n m ~ m  ~ n  

= (n -- m)Lq+m + Cnm, (32) 

where 

and 

with 

) . ( 1  - 

Cn,m = ¢~O,m q--nLT~ 
2 

- D - 2m(m2 1)} (1 q) (3L~ - Lo q-z) + 12 - +~n.-m m 1 +q 

Aqm =q +3n,m(1 - q )  

(33) 

(34) 

1 oo 
L q n , m  __ Z " i i .  

" 4a' " Oln-I Otl .qn ,m 

l = - o o  

(35) 

i i .  --3n mrn- t l  i i (36) 
: Oln_lOl I .qn,m = q . Oln_lOl I .q 

The q-deformed normal ordering "::q" is defined as in Eqs. (11) and (12) together with 
Eqs. (9) and (10), and conditions (31) lead to 

- D 2 ( 1  - q )  Aq q 5 +  + - -  

q -2- l + q  

3X2 [ q - 5  6 ( l - - q )  ] 
+ - - A q  = O, (37) 

+ 2  q q l + q  

2(1 - q ) A q  = 0 ,  3 + ff2q - -  dr- 1 --~-"-"'~ 

which can be rewritten in the simplyfied form 

X 2 + ~ X + Z q  = 0 ,  (38) 
q 
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where 

2(1 - q )  
x -- - - A q ,  

l + q  

Z - -  q-q 7 272.+ 2D (ll+q-q)2, (39) 
q 

Z q = ( q - 5 q  + D ) ( ~ +  (1-q)2)-l+q }+29(q -5q  

Notice that in the ordinary case q ---- 1, D = 26 one has x ---- 0 and Zq= l = 0 and therefore 
Eq. (38) is identically verified. For q ~ 1 and in order that Eq. (38) has a solution one has 
to have 

2 
- 4 Z q  >_ O, (40) 

q 

which implies that 

q - 7  27 D ( l - q ) 2 ]  2 

q 2 + 2  l + q  J 

_ 4 [ ( q - 5 q  + D )  ( ~ +  -i~q(1-q)2)+29(q--q5)]->0" (41) 

It is worth to mention that the critical dimension [10,11] 

Dc = 2 + 12(q + 1) (42) 

satisfied this inequality for 0 < q < 1. In fact, as it is shown in Fig. 1, the function 
f ( q )  = y-~2q - 4 Z q  is positive forq ~]0, 1]. 
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As an alternative way, to see explicitly that for the critical dimension (42), the q-deformed 

Fock space is free of  negative norm states, let us consider the first three excited states of  a 

q-deformed bosonic string: 

10)q, I~)q = ~ual  10)q, I~., O)q [)~,~a~ u + Ouva~Ua~]lO)q. (43) 

By appplying the mass operator M2: 

M2 1 q = ~ ; [L  0 - ~q(0)] (44) 

on the vacuum state 10)q and using relation (30) we obtain 

M210)q_  ( l + q )  cV 10)q. (45) 

Thus 10)q is a tachyonic state for q > - 1  and positive norm states for q < - 1. 

For the physical vectorial states 16)q, straightforward simplifications using relation (8) 
gives 

1 
q(ElE)q = ~E/~E u. (46) 

q 

Now, the q-deformed Virasoro condition 

L q l ~ ) q = 0 ,  f o r n >  1, (47) 

is trivially verified for all values n > 1. However, for n = 1, one has to have 

~u P" = O. (48) 

Moreover, the mass operator M 2 applied on the physical state IE)q implies that 

_ p 2 _  1 - q  (49) 
O/t 

with 

p2 = _ p 0 2  --I- pi2, i = 1, D - 1. (50) 

Signature of  the space-time is ( -  + + + . . .  +).)  Notice that in the rest frame, one can 

write 

(1'  j2) P "  = ~ 7 ( 1 - - q )  , 0 , 0  , (51) 

assuming that q > 1, to avoid to have IE)q as a tachyonic state. Combining Eqs. (48) and 

(51) one gets s ° = 0. Therefore, the norm (46) becomes 

6i2 
q (rl6)q --  (52) 

q 
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This clearly shows that q (ele)q > 0 providing that q > 0. Therefore, in order that [e)q will 

be a non-tachyonic state with a positive norm state one has to have: 

0 < q < 1. (53) 

Now, regarding the state 1)~, O)q and with the use of  q-deformed commutations relations 

one gets 

q ()% 01~., O)q ~-- q -t- 0uv0t'v (54) 

and 

3 - q I,k, O)q = -p21X, O)q. (55) M21X, O)q = oY 

For the Virasoro constraint: 

L ql)~,O)q = 0, n > 0, (56) 

one can show that it is trivial except for n = 1 or 2. Straightforward calculations (for n = 1 
and n = 2) lead to 

Jg(z~ + ~OuvPU)a+VlO)q = 0 (57) 

and 

1 
~4-dT~9~u P u + Ouvrl ~ 10)q = 0. 

, ,5 q 
As a result one has to have 

and 

kv + ~ ' 701zv  pu = 0 

(58) 

(59) 

1 
4 '~7)~uP  u + -0uvO u~ = 0. (60) 

q 

In the rest flame where pU is given by Eq. (51), relations (59) and (60) become 

,ko + ~ O o o P  ° = O, 

~.i + ~v/-4-~'Ooi pO = 0, i = 1, D -- 1, (61) 

and 

3 - q ]  U2 1 D-1 
--  1 0 0 0  "q- -- ~-~z-..a Oii = O. 

4V'-~-7~L° - - 7 -  q q i=1 

From Eqs. (54), (61) and (62) we deduce that 

1 [ (q - 2) [D-I ~ 2 

q{),,OlX, O)q~-q  1212q(a--q)-[-l]2 li~--I 

D-I D--1 D-I ] 
+ ( 1 - q )  E 0 2 i + E 0 2 + E O  2 ] .  

i=1 i=1 i¢j 

(62) 

(63) 
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Now, in order that the norm (63) is positive definite, independently of  the parameters 01,,, 
one should have: 

(a) ( I - q ) _ > 0 ,  i.e. q <  1, (64) 
2 

( ~ )  ~ Oi~ > 0 VOii. (65) r . , _ . . . _  . . 2 ( q  - 2) Oii -}- -'7 -- (b) 
t z q t ~ - q ) ± q 2  \ i = l  i=l q-  

Now, using the fact that x 2 - x + 1 _> 0 ¥x (here in our case x = ~ - ~ l  Oi i ), we obtain 

2,q2, ( °  
[ 2 q ~ = q 5  + 1] 2 1 - Z Oii "~ 02 >- 0, 

i=1 / i=1 

using (67) direct simplifications lead to 

(66) 

D < 1 + 4 ( 8 q +  1) 2 (67) 

with 

0 < q < 1. (68) 

This means that 

5 < D < 325. (69) 

Notice that the critical dimension Dc = 2 + 12(q + 1) where 0 < q < 1 gives 

14 < Dc < 26, (70) 

and consequently satisfies the double inequalities (70). 

4. Conclusions 

We conclude that the q-deformed open bosonic string critical dimension D,. = 2 + 

12(q + 1) with 0 < q < 1 guarantees that all the q-deformed states subject to the 

q-deformed Virasoro conditions (4) and (5) are physical, and consequently, the theory is 

free from negative norm states (ghosts). 
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